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ABSTRACT
We study partial integro-differential equétions of the type

(1) atu('.t) + .Au(-,t) + [f)t a(t - s)Bu(e+,s)ds = f(*,t), 0 < t<T,

in some spatial domain Q CR', A being a linear and B a quasilinear
elliptic operator of second order, both in divergence form, together with
initial and various boundary conditions. We give conditions on the structnre
of A and B that lead to a priori estimates and show how to get the
exigstence of weak solutinns (u(e+,t) € w1'p(9) or u(+,t) € w (Q) for
a.e. t) from approximating solutions (that solve finite-dlmensional versions
of (1) or versions with modified coefficients). The main tools are "energy"
estimates on 12 u(',t)l 2 + [ 6(Vu), if Bu = -div (V G(Vu)), for w'<P-

2,2

solutions, and estimates on tge L -product { Au,Bu) L2 for Wy{/.-solutions.

AMS (MOS) Subject Classifications: 35K60, 45K0S, 73F15

Key Words: Partial Integro-Differential Eqguations, Energy Estimates, Weak
Solutions, Materials with Memory '
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SIGNIFICANCE AND EXPLANATION
> This paper studies a class of integro-differential equations that arises

in some ﬁodels for heat conduction in ma%erials with memory or for the

deformation of visco-elastic membranes. Some classes of constitutive

assumptions are given that ensure the existence of weak solutions for these
models; i.e., stress or heat flux are integrable fields over the reference -

configuration. The models are hybrids between damped nonlinear wave equations

and perturbed heat equations, and.mathematical techniques fbr these different

-~

~.

problems are combined to establish existence results. (f;—“-N;

~—

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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WEAK SOLUTION CLASSES FOR PARABOLIC INTEGRO-DIFFERENTIAL !QUATIONS

Hans Enqlor' and Ttephan Luckhaul'

1. Introduction

In this paper we want to consider the Lntogru-difteton;ial equation

) . t
() 3 u(x,t) = & u(x,t) - [ a(t = g)div_g(V u(x,s))ds = £(x,t}
t x ° . X" X
in Q@ x (0,7T)
together with an initial condition
"(1.0) w(+,0) =u® in @
aﬁd boundary conditions
(1.1) vsu' on (3\D) x [0,7) ,
t . .
(1.2) -v s (Vulx,t) + [ a(t = 8)g(Vulx,s))ds) = Blulx,t))
: 0

on I x (0,T).

Here 8 CR" is bounded with Lipschitz boundary 1, I' C 3%, v is the outward normal.
The function g : R+ 2 1is a gradient, subject to certain growth conditions; a is a
scalsr kernel with some regularity properties and a(0) = 1; 8 is a monotone function.
The functions uo,u' are traces o!.lon. function vy ¢ 8 x {(6,T) * R, £ and u, are in
certain regularity classes. The precise assumptions are stated in the sections below.

In Section 2 we prove the existence of distributional solutions, using a version of a
technique that has been used by J. Clements ({4]) for the case a = 1 and constant

Dirichlet boundary conditions. In Section 3} we consider specifically the “isotropic®" case

gl&) = qo(li]) * I and prove some results on inner regularity, showing that all terms

'Inltltut fiir Angevandte Mathematik, Universitat Heidelberg, 6900 Heidelberg,
W. Germany.

Sponsored by the United States Army under Contract No. DAAG29-80-C-G041.
Supported by Deutsche Forschungsgemeinschaft.
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appearing in (I) are in LIOC(Q x [0,T])s. For the case of constant Dirichlet data and a

domain Q with Cz-boundary, it is shown in Section 4 that the regularity estimates hold up

tc the boundary. Sections 3 and 4 use a device by V. Barbu ([2)) and M. Crandall/s.-O.

" Londen/J. Nohel ([6]). No claims concerning the uniqueness of the solution are made in the

general case; for this question and some other remarks see Section 4.

Fgquation (I) has a physical interpretation from the theory of heat conduction in
materfals with memory. Consider a homogeneous rigid heat-condncting material occupying
some regicn @ C R, Let q denote the heat flux, u the absolute temperature and e
the internal energy. In various gencral models for heat conduction (cf. (5], [17], [19})
it has been proposed that q and e should depend both on the present value and the

history of the temperature and its gradient. The constitutive assumptions

(1.3) atx,t) = -a ¥ ulx,t) - [ ats)g(V u(x,t - 8))ds ,
X 0 x
(1.4) e{x,t) = eo(x) + x * u{x,t)

(x >0 and a; > 0 denoting heat capaclity resp. conductivity, a a suitable relaxation
kernel) together with the law of encrgy balance
(1.5) B ate(x,t:) + div q(x,t) = r(x,t)
(r denoting heat sources or sinks) then jive (I) after rescaling time and prescribing the
temperature history u up to t = 0. The boundary condition (1.1) corresponds to a fixed
temperature outside of 1 and ps ect heat conduction through the boundary; (1.2)
cotieapondé, e.g., to a radiation law or to local temperature control at the boundary (cf.
{9]). This physical model leads us to regard (1) as a perturbed heat equation.

Another physical inte;pretation of (I) comes from the theory of viscoelastic
materials: The one-dimensional version of (I) with a = 1 describes longitudinal motions
of a homogeneous bar composed of a Kelvin solid (cf. {21]), [10]), assumina the following
relation between strain E and Picla-XKirchhoff stress L:

(1.6) L =G(R) + LE) ,

L. a linear tensor-valued function, é densting the time derivative of E. The two-
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dimengional equation (1) then arises in a model for the normal A£;plc=en;nt u of &
membrane composed of such a material. The boundary condition (1.1) corresponds to a fixed
portion of the edge of the membrane, (1.2) can be interpreted as a friction-type boundary
condition, the friction coefficient depending on the displacement. It should be noted,
however, that one would have to take E to be the linear lntlnlc.l;-al>itraln in order to
arrive at (I), which somewhat disagrees with taking G as a general non-linear function in
{1.6). Nevertheless this leads us to view (I) as a damped non='.near wave squation.

It should be noted that the fundamental differences between these two physical
interpretations essentially appear in the asymptotic properties éf the kernel a and the
forcing term f£; cf. (18] for a discussion of these problems.

Various authors have discussed the one-dimensional version of the visco-elastic model

problem leading to (1) (hence a 2 1) and shown existence, uniqueness, and asymptotic

.prop;rties of classical solutions ({t), {7}, [12), (23]), Weak solutions of the more

general equation (I) (a arbitrary, n = 1) have been discussed in [20] and as
applications of abstract theorems in {2] and {6]. The n-dimensional caio for a 21 and
homogeneous Dirichiet boundary data has been treated in {4) where diitributional solutions
are shown to exist.

A few words on the notation that we are going to cnpioy:

For x € RS, |x| denote the norm; U+1 is resarved to Banach space norms.

ror £ : R » R‘, Ve = Vx! is the matrix uf (weak) dorlvutive; ;horcv.r it exists
{gradient for & = t); divxf e div £ is the divergence operator Appliod to £, if
n=g% For QCR", w*"(n,x) is the usual Sobolev space (for *'- R or X = R‘ or
X a Banach space); C;(n) is the space of Ck-tunctionn f£:1 Q9 i such that supp(f)
(tﬁc closure taken in R) is compact, also if 2 is not open; H:'p(ﬂ) is the closure of
c:(n) with recpect to the WX’Ponorm. D;pcndcnco on the variables x € K or t € R is
suppressed where no confusion will arise.

By a * bi(t), a e L'(O.T:l), be L'(O.T;x), X a Banach space, we denote convoluéion

with respect to ¢t:

-3~
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a*n(t)=] a(t - s)bis)ds .
:

The symbol C, when appearing in proofs, denotes a constant whose value can chanje from

line to line but which depends only on given properties.
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2. Woak Solutiong of the Dirichlet Problem.

In this section we want to show the existence of solutions of (I) if T is the empty
set; i.e. the boundary condition (1.1) should hold on';ll of 3Q » [0,T]. We shall use the
following assumptions:

(A1) .Thc region 2 C ® .13 open and bounded.

(A2) The function g : R® + B" is given by g(%) - VEG(ﬁ). G(0) =0, G : R" + R being a
cl-function. There exists a constant L >3, such that G(£) = G(§) + % (lﬁlz + 1)
is convex and positive, and there exists ; Cp » 0 such that for all Ener

(2.1) : |9t€) = n| < ¢y ¢ (GLE) + G(m) + 1) .

(A3) The kernel a is in w¥'((o,7),m)s a(0) = 1.

(A4) The function ug 3 @ x {0,T] + R satisfies

T .
’ = 2, 2 2
{ é {G(Va juge,20) + |V 2 u (o, %+ [32u (e,0)|“}as < =,
u (.0 ewa ,

é GV u (+,0)) ¢ =

(AS) The function £ is in w'<'([0,7), t2(a)).
We are going to prove the following result:
Theorem i.1: Suppose (A1) through (AS) hold. Then the equation (I) together with initial

and bLundary conditions (1.0), (1.1) has a distributional solution u; i.e. u satisfies
i

T
(2.2) | / £ (VatasgVul) e Vo-usde-t- ¢laxde = é ug(=:0) = $(=,0)ax

for all| test functions ¢ € c;(n x [0,1),R)1 and (a = u)(e,t) e w;"(n,n) for a.e. t.

Moreover,

-Se
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(2.3) I |atvxu(-,-)|2a. + sup [ (lacu(-,t)lz +G(Tule,t))) SR <=,
[ ] v 0,T] 8 .

K depending only on the data of the problem.
Proof. We shall use a Galerkin procedure and
t. !m& approximating solutions,
2. deduce a priori estimates for thea,
3, show that some of their weak clusterpoints solve (I).

Step 1: Let (V-)-” be a sequence of finite-dimensional subspaces of w;'z(ﬂ), Uv_ be
- . m

dense in w.;f'z(n), V- c C‘(a). We seek solutions ;- s {[0,T) + Va of the systems of

ordinary integro-differential equations l

(2.4). ‘jz ’g‘?""’ ‘v +£ (vxs“(-.e) +a e g(Va" + ¥ L)e,t)) vy
-£ (£0e,8) = 3w (e,t)) ¢ v - ! Bgleet) » Vv |

for all v e Va and 0 < ¢t <1y ;'(-,0) = 0, B8y standard theorems on functional
|

differential equations (see [13)), (2.4) has a unique local solution ;-l: f0,7,] +v, for

~m 9,4 i
all m; u  is of class C '’ with respect to t.

Step 2: Let W™ - :l' + upe We show that there exists a ccnstant c', depending only on

uy, £, and ého properties of a and g, such that for all =
.o i
i

. . :
(2.85)  sup [ @7 e,0) » |3 et D 4 [ [ Ve de )P <

. x t t

{o,7) Q 08
[}
which shows also that solutions of (2.4) exist on ([0,T!.
To show (2.5), we shall transform (2.4) such that a £ 1, differentiate test with

a'ti", integrate over (0,t], ond show that the "good" terms (that appear in (2.5))

dominate all the rest. Let r be the resolvent kernel of ;; i.¢¢ r: {0,T] *+ R is

defined hy

t L] ’ *
£(t) + [ r(t - slals)ds + a(t) =0, O<CEL<CT.
[]

-fw
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Then r is as regular as ;, and for y,z € L'(O,’l‘;l)

(2.6) a*y =2 on [0,T] iff 1%y =g+ *x on {o,r] »

We apply (2.6) to (2.4), with
yit) o= {z (v, u"(e,8)) ¢ Vv,

differentiate the resulting identity, and note that it is possible to take t-dependent test

functions v € L’(o,r;vn). We then choose v{(T) = OtG'(O,t), and integrate from 0 to

t. The result can be written in the form
(2.7) Iy(t) + Io(t) + Iz(L) = X lt) ,

with the following notation:

t t .
10t = 3 3, ,0) 2w zt0) o [ f [, 00| %an 4 [ [ 3 metE @ 35N 00as
oa 0a

. 3
>3l e ?-co [ 3, 0.0 %,
a oa

t
e8] %8 + -'-‘21?- s [V Eeaf?e g V2,0 80 (7 * ¥ 3" (0, n)ds
8 oQ

x 1t 2 (0) 2 ¢ 2
a;{é [9,0,57 0 0) | “as + 55 é AR O R ‘{‘{ [9,57 0] as ,

t
g L 2
1,(t) = [ é V2,0 e 8)eg(9 (s, 8))ds = [ G(V u"(e,t)) - 3 (s!: !qun(ﬁt)l + 1),

0

1 4
Tyt) = [ [ (3 £(,8) +x %3 £(e,8) = dda (e,0) - £ ¥ afuo(-,-))-a.&‘(-,-)d:

[ ]
t e}
- {{2 (V3,u,(cs8) + 1 ¢V 2u(e,8)) 7 du(s)ds

t
+ {, ‘[3 V3 u (8 o g(qu-(O.l))dl

1

‘o

t _ 3 t t
<[ Usetf |3, 0| h2as e 3 [ ]73 e m) %0 4 oof [
0 Q 2 0

T

]

-

G(

qu"(nl))ds +C,

(R V)
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with T e L‘(O,‘ral); using the properties of g, Ug, and £ 4in the last estimate.
Inserting all these estimates into (2.7) and using Gronwall's lemma we get (2.5).
Step 3: We extract a subsequence of the (u.)-”, again labeled in the same way, such .
that
LY 2 2

(1) u" *+ u strongly in L°(0,TiL°(R)) ,

(1) V‘u- + Y u weakly in t30, ek
(111) 3,u™ » 3u weskly tn o, mw' %an) o

(v) g7 u") + ¢ weakly in zio,mz'ia,8™) ,

with a suitable function . All these limits exist due to suitable imbedding theorems;

the choice (iv) is possible since the g(Vu‘) are equi-integrable and hence weakly
sequentially precompact in L‘((O.'r] x ﬂ,ln) (cfe {9]) un& lemmas 5.3, 5.4).
Next we want to use thet actually
(v) itu- + 3tu strongly in t.z(o,'nx.z(n)) .
Suppose this is true; what is needed to complete the proof of the theorem now is
(2.8) = q(v"u) a.e. Oon Q x {o,7} . o ;
To show this, we use a version of a monotonicity argument which has first been employed by
Clements ({4]). Transform (2.4) again by means of (2.6), differentiate the resulting .
identity once, and take a test function 3 Y e w"z([o,'r) ,v.). Integrating the
resulting identity from 0 to s with respect to t and from 0 to T with respect
to 8 then gives
T T
(2.9) -g (T - ¢) ‘[‘ (3,u" viae + £ xfz duevat-r é 3,u"(+,0) + v(+,0)

7 T
] (2, (V)e) + 1, o(vH(E) + X, S(vd(e))aE = [ I (v)(tiae.,
0 0

using the abbreviations
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I, 1(V)(E) = (T - &)
‘ 2

t m
I,,2(v)(e) = { é V2,070, 8)V v(e,u)ds + (T - ¢) £ (tz(0) = L)V u(=t) = r(e)T 0" (+,0)

+r qu-(°.t)}vxv('-t) .

I, 3(v)t) = (T = &) £ CTUR S CRSTIT A" C) IO ATCA I

TWE) = (T = &) [ (3, 8(e,t) + 1 % 3 £0e,%)} & vioyt) o
a

As m + ®, we can replace Ill k(\v)('.t:) by Ik(v)(-,t) (1 €k €3) and atu’.‘ by
14
'Btu, Vitu- by vatu, g(Vu‘) by g, in obvious notation, using (i)=(iv). The resultirg

identity che~ holds for any v € w"z((o,'r) ,w;"(m) (by density). W“ors precisely, we

only ased v to be in w'*2(0,71,2%)),1%(0, 7w’ %(9)) ana adaitionally

sup [ GV w(e,8)) <=,
(0,7} Q

as is shown in Lemma 5.5. We now insert v(e,t) = o-“ e {u(s,t) - uo(O,t)). a>0 to be

chosen later. Writing “a(. t) = e-atu(nt),uo a(nt) - o-“uo(n:), we f£ind the identity
: ?

T T
(2100 = J (r-02e™ [ |3, ute 00 %t + [ (arr-e1+a™™ o [ 3 ute,t)euce et
0 a 0 a

T
-at_ .1 . 2 i
+f a *[{3 + (T-t)(x(0) - L + g)) £ |9, uie00]% + é r*V u(+,t) ¥ u(e,e)lae

T T
+ g (Z,lu () + I 0u )(¢))ae = { (T tug)(e) + I (g (e} + I(uy )(E)

T
+ 13(u° c)(t))dt + { £ at“"'°)°[3:“o(""‘ °t(:-r) + (a{T-t) + 1)e-utun(°,t)}dt

.7
T 2 -
+3- é [9,u5¢0.00]* + { (T-t)r(t)e ¢ g V8000007 ule,thae .

9=
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Next, we insert v(e,t) = e . (u'(nt) - uo(-,t)) in (2.9). After rearranging we

- get

T . T - ‘
(211) = [ (r-t)e”t J |2 ,u"e 00| | tatr-t)+1)e™ [ 3 u (e e (e, t)dt +
° 2 0

']

T L]
s [ &L ¢ (r-edror-n + D} [ 90 00) 2 4 [ 209 0o, 007 (e 000t
0 2 2

T o
+ [ (gTu™) +Le T u™ o T o™ o™ - t)at = c(m) ,
SUx x x
0oQ
C(m) contains only terms which have corresponding expressions in (2.10) as limits.

take a big enough such that the form

(2.12) wof .""({% + (T~t)}(x({0)-L + ;;))-vz(a) + rev(t)sv(t)jdt for v e (0, TR)
0. v

is positive definite. WNow take the 1lim inf 4in (2.11) as =m + », The first two integrals

on the left hand side converge due tu (v); the third integral is the positive definite form

that appears in (2.12) and is hence lower semi-continuous with respect to weak

convergence. Comparing the result with (2.10) we see that

T
Ua tnf [ & %(r - e) [ (907 u"(e)) ¢ L e Ve e0) o U ORI
mée 0 Q

T .ae
<[ &« -t) [ (tle,t) + L Voule,t)) o ¥ ule,t)ae .
0 ) x

Then a standard argument using the monotonicity of p # g(p) + L * p implies that

g(v‘u) =7 a.e. on Qx {0,T) (cf. [15]).

It remains to be shown that (v) holds. Let w_ = atu‘ e w""( {0,T] ,Vn). We use a

version of a compactness argument in [15] to show that ("'n)men is a Cauchy-sequence in

£2(0,7;.2(2)), from which (v) follows.

-10=
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First, let X =7V, equipped with the w' -norm, X be the w' -closure of
o - .
L_, Xm, and x',x; be the corresponding dual spaces. We claim:
m=1
For any € > 0 there exist C(¢) > 0 and K € N such that for all z € w"’(n)

(2.13) Izt 5 <€ 1zi 1,2 + C(e) « bzl .
L) L) (%) XK

) in w3, 1z 1 = 1, such

For else we could find an € > 0 and a sequence (

Zx'x>1 J1r2
that
(2.14) 1z 1 >eE+ K 1z 8 .
K _2 | S
L7(Q) xx
Using the compactness of the imbedding w1.2(9) + Lz(n) we extract a subsequence with Lz-
limit z,0zl > €. On the other hand, by (2.14) 1zl , + 0.
L7(Q) . X

By density, this implies that zg * 0 weak-* in X , Kwhich is a contradiction to

zl(k) + 2% 0 in Lz(n) for a suitable subsequence. From (2.13) we conclude that for

all € > 0 there exist C,K such that for all w € L2(0,wa1'2(9))

(2.13) 1wl <€+ fwl + C+ lwl -
L2c0,msn%a)) t2c0, 7wt 2(a)) LZ(O,T;XK)

wWe apply (2.15) to (wm)m>1 and see that it suffices to show that this is a Cauchy-

sequence in any LZ(O,T;x;). In fact, since w, 7 3tu weakly in Lz(O.Tynz(ﬂ)) by

(iv), it will be encugh to show that (w ) is precompact in any Lz(o,T:x;): the claim

m'm>1
then follows from standard diagonal sequence erguments. Now the differentiated version of
(2.4) shows that for fixed K
(13w 1 |x ¢ m}

K

is an equi-integrable set in L’(O,T;R). Hence for fixed K the v, are equi~continuous
in Xy and by (2.14)

(w (0, v) = f (=Y

x 0
XK,XK j¢]

. va +£fev),

-11~
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which shows that (vm(O))_>1 is uniformly bounded in x;. Arzela's theorem then implies
»
that (v-)‘>1 is precompact even in C([O.T],xx) for any K.
This argqument completes the proof of (v) and thus of the theorem.
Remarks

2,2. As in, e.qg., [6), it is possible to weaken the assumptions on a to

aeu' " (0,71,m), & e BV([0,T],R), a(0) = 1,

and the proof of Theorem 2.1 even allows to include x-dependent a, @.g.

aew?'(10,1,L7a)), a(e,2) 2 1.

2.3. The condition (A2) basically requires g to be of "polynomial®™ character such that

(2.1) holds. However, g can be "anisotropic® in the sense that it can possess different

growth properties along different directions in R". Also, g can be "degenerate”; e.g.,
ge) = 1+ |E|H™% g ar0

is allowed, and g can be *non-monotone® (only E® g(€) ¢+ L » £ has to be monotone); cf.

[1] for an even weaker assuwption in the case of one space dimension. Finally, the proof

allows also to include x~dspendent g's or an elliptic differential operator in divergence

form instead of the Laplacian.

-12-
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S 3. Differentiable Sclutions

In this section we want to give a somewhat different existence argument for solutipns.
of (I)« It is partly based on a method thac was used in (2] and [6] to treat a Hilbert-
space version of (I) and will enable us to include the nonlinear boundary condition (1.2)
and to show that ull terms in (I) actually exist as locally integrable functions. On the
other hand, we shall only treat the "iiotropic" case g(p) = go(lpl) * p. Some variants of
the assumptions made above will be used: v
(B1) The region Q2 C R" is open and bounded. 3R is a Lipschitz manifold, I'C 30 is a

submanifold of dimension n - 1, @ is locally on one side of [.
(B2) The function g 1 R + B* is given by §(p) = gollpl) * ps g5 1. [0,®) +R being
locally Lipschitz-continuous on (0,®). There exist constants Ly >0, &> 0,

4 > 0, such that for all r > 0

9 (3.1) golr) + 1,30

-

3 (3.2) 8+ gplr) + Ly) €S- ((gglx) + L)) 1) € C o (gplr) + Ly) &

:_: ot r

= Similar to Section 2, we define Gy(r) = [ gy(s) * eds for r >0, G(p) = Gyllpl),
°

ana &tp) = G(p) + 2L, « IpI2

(23) The function B : R+ R is locally Lipschitz-continuous, and there exicts a
constant Ly > 0 and for any € > 0 a C(€) > 0 such that for all r € R

(3.3) <Ly € B'(r) € ¢+ (B(r) + L, *r) +Cle).

Without loss of generality, Ly=Ly=L> 0. Define

T

Btr) = [ /B'(s) + L as .
0
=
3 (B4) The function u, satisfies
I _ o BPlue,00) <®, sup [dul<e.
- r 0 rxfo,7] °©°
9
g The main result of this section is .
!T
L
: 3=
2 .

L o o e )

v
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Theorem 3.1: Suppose that (B1)-(B4), (A3)-(AS) hold. Then the equation (I) together with
initial and boundary conditions (1.0)=(1.2) has a distributional solution u; i.e. u

satisfies

T t
Wi (Vus+argVu)e9¢-uecdg-tfepaxa + [ [ w e edxat
04 or

- f ug(*s0) * ¢(+,0)adx
]

for all test functions ¢ € C;((ﬂ UTl) = (0, TR w & L’(P % {0,T],R), such that

w e f(u) a.ec on T x [0,T)s(u = uo)('.t) is for a.e. t in the W''2-closure of
SNTCRVE JR TR
Also,
T 2 2., 2
(3.4) [ 13,9 0l +f 13,8(uw)|“}ae + sup I(Heu(ne)l +6(Vu)) ¢,
o a r {o,7] 8 :
and
T 2 2 2 2,2,
(3.5) f f £° o IV‘(/qo(iqui) + L V:u)l dxdt + sup f £ o |V¥ul <=
oQ {o,7] &

if € 1 @ + R is Lipschitz-continuous, {laa 0, IV‘EIL. €1 (e.g9., if
E(x) = diet(x,3Q)).
Proof. We shall
(1) find solutions of approximating equations,
(1i) derive the estimates (3.4) and (3.5) and
(iii) pass to the limit.
For M > 0 we Aefine
gp(r) = infigy(r),M),  ¢Yp) = oftlpl) < p
8"(r) = inf(M,sup(B(r),-n)) .

Clearly, qg and 8" furrin (B2) and (B33) with the same constants.
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Step 1: We solve (I) with g replaced by 9". B8 replaced by S". and get solution uM

by means of a Galerkin-type argument similar to the one used in the previous section (cf.

[11] for an abstract existence theory for similar problems). The w* are unique, since

¢ and 8" are globally Lipschitz-continuous. Define

r
BM(z) = f /B".(l) + Lds,

Ipl
c"(p) - I 9:(!) e gds .
0

We show that (3.4) still holds vlch G,B,u replaced by G',B",u", the bound not

|
depending on M. To this end we take backward difference quotients in (I), use the

backward difference quotient dh(uH = ug) as a test function (which is admissible),

integrate over (h,t), and let h tend to lorb. The result is the following identity:

t ¢ :
M A . M * N M
££ 3, ¢ 35 0" - ujdxae ¢ { ‘{ (97,97) + 8 ¢ gT,u)) 39 (0" - ug)dnde

[

*
|
- P

(3.6) +"[' 3.t o 3t - ue erax +£ 3, 8™ o 3t - upanae -

|

!
e !
|

= ffa g (- upraxae .
oa * * !

The manipulations that lead to the estimates of atvxu" and atu" are the same as in the
corresponding part of the proof of Theorem 2.1. Only the two integrals that contain the

nonlinear terns g"(vxu") and Bu(u") need some additional arguments:

-15=
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£ { a.vxu"(-,.) . (g"(vlu")‘+ ae q"(qu"))(’:u)ds -

= [ M e, - [ M 0 o f valteey o 3o g aMyie,e

Q ) . f
e M M M t M M M ‘
- { [ ato) Vou(eie) ¢ g(Vu(e,e))as = [ [T u'(e,0) c Xeg (Vu'(e,8))ds ,

Q 0g

where we have performed an integration by parts.

We use Lemma 3.6 to estimate this from below by

N

t
[ M e, - % [isaeen?-co g @y e ,0m
a 2 oq

TR W PP TL PR T

Also,
¢ Mo N
iff V. 3,0p(%e8) ¢ 3 _(a ® gV u")(e,8))as] ¢
oga

t 2, Mo M M 2
€Ce ££ (G('.ﬂ_.uu('.-)) + L‘lv'i.\lo('.-)l‘ +G UV uT(e,8)) + L°Iqu (*,8)]“)ds

by the sams lemma.

Concerning the other nonlinear term, we have ﬂtu" e Lz(l‘ ® [0,T]) by Lemma 5.1 and

t
S At en o 3 (M - u e mas
of
t ] 2 t L] 2 t M M H
o [ 19 8% ontZam - n e [ ] 10 w00 ~ [ ] B8(u)ed u'(e,8)ed u (+,8)ds .
or °* or * or s s 0

We use lLemmas 5.1 and 5.2 to estimate this from below by

-16-
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e«ce (f ] IBtu (e,8))]%s + 1) .
or .

Collecting all terms we then get (3.4) after an application of Gronwall's Lemma.

Step 2: We want to use Cz . Au" as a test function, ( € H;'.(ﬂ). and hence have to

show that § V:u“ is in Lz(ﬂ x {0,T]) for such €. To this end we replace the

kernel a by a‘(-) - 1[‘ .’(') s a(*) and consider the elliptic problems
[

(3.7 a0 - atvta® o MO e = 20 - 300

for 0 € t < T with corresponding bovndary conditions. The problews (3.7) can be solved

" step by step, its solutions Nl satisty

(3.8) oun [ €20 1931 2,0 <R for all ¢ and w,

(o,7} @ .
K(M) independent of €, if we use the estimate (3.4) for 3eu". the global Lipschits
condition for 9" and l". and standard results for linear elliptic oquuon; ({14]).
Passing to the limit as ¢ + 0 we recover the u" for which thus (3.8) still holds.
Hence (I) holds a.e. ia 8 x (0,T)], and all the summands appearing in (I) are in

Lz(ﬂ' x [0,T}) for .ny compact subdomain 010: Q. let again r denote the resolveat

kernel of ;:

t
v(t) + [ a(t - s)r(s)ds + a(t) =0 on (0,T) .
°

Taking the convolution of (I) with r and adding it to (I) then gives
M M
(3.9) N O R N TR [ ORI S CH IR S PR I
SRR TOR U TEN I PRSI R ORI
Let again d, denote the backward differerce quotient, and let [ € H".(Q).

supp § -O’CC q, W < 1.
L

-17=




We apply 4, to (3.9) in h € s < T, wmultiply with {2 . (-A‘un('.l)). and
integrate over U x [h,t}, t € T. As h ¢ 0, all limits exist a.e., and we gt the

identity (for a.e. t)
: " N 2 & M2 .2 M .M
(3.10) = é Ju (e ,8)08 uT (e, t)eE” - { £ (9,3,07170€% + 2609 €29 2 u")e3u)
t " M. o2 % . M M, .2
+ [ [ £(0)a u"e (=8 w €% + [ [ (xed uT)e(-8 u)eE” 4
o8 x °on t x

t .
. -'5‘{ ST IR TR { ‘I' (rco)a o™ + ;'Axu“)-a‘u"-c’

v t
] M ] 2 1 2
+ { ‘{ 8 uediv (g7 (Y u))eE 0‘{ {£(=,0) + 3 A’uo('.ﬂ))'é‘ulo(no)';

t . N .2
s [ [ (3 €+ x(0)f + rot)e(=a u )eE* .
t
[ X"
Rearranging this and using the estimates for 3tu" and V‘Otu" we get for a.r. ¢t

€t
M
§ (3.11) %é 18 ™. g? s { {‘ 8" e atv (M7 s L 9™ . g

- e
. < + [ oyt [ 186", 0E%xas
0 2

with some Cy >0, cy e L'(O,T;l) independent of M,L as in (B2) and big encugh. We want
to aﬂnto the second integral on the left hand side: Pix M and 0 € s €t and write
;(r) - qg(r) + L for short. Then (suppressing s—dependence and writing 31 for Ox )

1
M - ] M 2
(3.12) ‘I.Axu * div (g(IT u"]) ¢+ Vu) ¢ E°m

- ‘{ R KL IO R IO S
1.3

* * b M . 3 M . M - M~ M . M
+ 1§j£ 2§38 “jaj“ gtV uh du aliju gli%W |) aj“ ) .

-18-




Now for a.e. x €4

I a0 (307D -
1.3 173 3 b3

-xe ] 131(/9:(”\:"]) ’

ju"n’ + (1= ngw"D ] |alaju"|"
1,3

1.3

S e - M2
¢ = kg (VD7) - ko _(_géﬂVan_ o 1w | liiiju"aiu"lz .
. © agti®a’l) 1,3

X > 0 to be chosen later. Writing p = 19" ana a = ) li’_?’uul3 for short, we

1.3
estimate further

F ' - a’ 20 2
ces P K ® z '31( q”v“"“ 3,\!“”2 + ((1 - ‘) e § o Q(P) - e 1’-&%’.’—2.) LI § .
1.3 ) 4g(p)

8 as in (3.2). Choosing X small encugh we see from (3.,2) that this expression is
bounded from below by

«o 1 13,0509 o T e & e e - e
13

This term, multiplied with Cz and integrated over £, hence gives a lower bound for the
first integral on the right hand side of (3.12).

We estimate the second integral, using the same notation:

12j [ %3, 600,3,6" « 5p) 3" - 3,065 < 2

’uF)

<%.j;’-;(p)-a+c(6)-I;(p)'pzc
Q Q \
. M | "2
8§ as in (3.2). But the secund integral can be estimated by [ G (V‘u ) ana vau i
) Q

(Lewma 5.6), and this term is bounded by the estimate (3.4) uniformly in ¢ and M.
from (3.11) we get

Hence

-19=
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t
1 M2 .2 Ju oM . omM2 2
(3.13) ;‘[',u‘_u et s [ ] 13, ¢ 9°(|7u|)+x.3ju M e €

.
<c, +f C,(s) / leul"(-.l)l2 o g% .
0 [}

and Gronwall's Leama implies

witee2ex,

) k 4
(3.14) owp [ 18" e e[ T 1000w 4L )
081,9

fo,7) 9
K not depending on M.
Step 3t We extract a subsequence of the ('), . (nct ralabelled) such that -
(1) o™+ u strongly 1n r(0,mra) ,
“strongly in 12(0,253(T)), and a.e. en © x [0,7) 4
(1) 3"+ 3 u wearly tn pXo,mw'%an ,
(11) V" + 9 u strongly 1n each pie,mra'n, 2'cca. N
Also, the estimate (3.4) together vvl.th the properties of $ and 9y (cf. lesma $.4) shows
that ,’H("") and Q:HV:\:"I) . V'u“ are equi-integrable families and hence vukiy
precompact in z.'(o.'rn.'(r)) resp. in x.'(o.'ru.'(n)). Hence we can choose the subsequence
such that |
(1v) B"™) o n weakly 1a 2'(0,m2l(r)) 4
v) G319 ")V o™+ & weakly ta n'to,mizlcan) .
The continuity of § nﬁd 9o together with (i) and (iii) then show that
N =fB(u) a.e.on [ x ko,-n
£~ qo(IVuI) * VW a.e.on Qx {0,7],
and moreover (3.14) still holds for the limit function u. Hence u solves (1), and V:u
and a * dlv(qo(lvxul) . V'u) are in L'(o,'m.foe(m) resp. in L.(O,T:L;w(ﬂ))- Theorem

3.1 is proved.
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Remarks.

3.2. 8ince no differentiability properties of u, on 90\l are ever used, one can weaken
(B1) to the touoving.hypothui-: v

There exist (n = 1)-dimensional Lipsct itz-manifolds TI,l , such that T C l"o C l‘o C aq,
and @ is locally on one side of l‘o.

S8ince u; determines the behavior of uolut.ion: only on 3Q\l, (B4} then is only a
condition for u, on (l‘o\l-') % [0,T] (by suitable extension arguments.). Also, no
additional problems arise if one replaces 3(u(x)) by B(u(a)) + h(x,t), h s T x {0,7] *+ R
in a suitable Sobolev class.

3.2 It is possible to take B = 80 + 61 as a boundary nonlinearity, ’0 as in (B3),

8' being maximal monotone and sublinear, at the expense of assuming more regularity
properties for no(O:uo e L‘(O.T,Lz(l')))- Also, if G(E) > ¢ o lCl’- c, €>0, p>n,

then B need only be continuous and 8'(r) > -L,, since then the approximating solutions

will converge uniformly on T x [0,7]).
3.4. It should be possible to extend the class of functions g : K + X' to "anisotropic”

onss (the Jacobians Dg having isotropic spectral radii, however), satisfying, e.g.:

»
There exist c,K',x >0 and u,,¥ s [0, + R such that for all §,p € &

2
(e (1l = %)« 1617 < ¥« pgtp) « € < (w'tiph + %)« 1817,

u.tipl) 1912 > ¢ « (gtp) + p) - L S
*
W (ph) €K« tlpl) + Ky
lgtp) * pl € K, * G(p) + K, * (112 + 1), where again VPG(p) = g(p) .
What kept us from including these assumptinns were the technical problems that arise when

one tries to approximate g by suitable functions J‘.
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4. The Dirichlet Problem

In this section we want to show how to improve our results in the éau of Dirichlet
boundary data ﬁlan 2 const. by a -odulcathn of the method in Section .J'. ' The principal
tool is the
Lemms 4.1: Let @ C R be bounded, 30 of class c2. Let gt [0,®) +R be locally
Lipschitz continuous, and let u € Cz(a,l), “'aa $ 0. Then V
(4.1) {a 8u e atv (g(19 )V ) = 1?3 ‘[‘ 33,03, (g(1V,u)3,u) +

2
+f gtdu) e 3 ul®e(n=-1)n
w Y v : '

wvhere Vv is thu outward normal on 30 and H the mean curvature with respect to V.

Proof: An integration by parts gives

1 J 3 3,u ¢ 2, (g(1%,ul)d,u) +

[ 8u -+ aiv (g1 ul)V u)
2 x x x 'k iy a

.+£n (Axu . avu - ‘Ej 3133“ . qu . \01, . 9(|7x‘1“ R

Since Vu=3ue+v on 30, the boundary term can be written as
, .
I/ (du-v -V:u’ J) °g(l3vul) . avu.

Consider a point x € 9fl. After a suitable translation and rotation we can assume

"that x = 0 and locally about 0 30 = {(;,st“)lxn - 0(;)}: Q- ((;,xn)lxn < X)),

$:1U+R a cz-functton\( U some neighborhood of 0 € lt“", and V_Q(O) = 0. Then in
i x
these local coordinates

8 u(0) = 320 - &.40) * 3u0)

w0« $2a(0) + wo) = 22uco) .
But Onu(o) - 3vu(x) according to our choice of coordinate system, and
“4 #(0) = (n = 1) * H(x), isince V_¢(0) = 0. Hence

T. 2 L d . by L - - L] L z
gn (8u =V e Vuev) e+ glldul)edp {n(n 1 e H - gllduhlaul®.
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This Lemma is a step towards a simple non~linear vecsion of Sobolevskii-type estimates
for linear second-order elliptic operators as stated, e.9., in [3. We thnrq( Pro’. A.
Friedman for pointing this out to us. ‘

Obviously the identity of (4.1) still holds under ‘the auu-lptionl
wewd3g)n Wo'2(@), g locally Lipschitz and bounded, r® g'(r) + r bounded, by a
standard approximation argument.

It is now possible to use (4.1) to modify the arguments of Section 3, if in (1.1) T
is empty and “Iaﬂxlo,'r) Z 0.

In step 2 of the proof of Theorem 3.1, the expression

£ s o av(g(19 "D o - g

1,"

had to be estimated froa below, £ € "o {(Q) 4in order to take care of boundary tevms. If
8 is C2-smooth and n"lan 2 0, we simply choose § ¥ 1 and get by Liama 4.1 and
menipulations similar to those in step 2

“nlz

—_
[ o avguv s s ko [ T e (detv ™ 9
q x x x 24,3 1 x 3

—ce fava™ e 192+ F1aWM™) o 132 e n=-1) o u,
2 x x n v v »

K > 0 a small constant. By a standard trace theorem this can be estimated from below by

215 1,505 a5i? - e o [ Sunthint?
14, Q

i,3
(see Lemma 5.1), C> 0, and f ;(IV\;HI) . qu"lz is a priori bounded by (3.4) and Lewma
v}

5.6+« Hence in this special situation the solutions found in Theorem 3.1 fulfill

T
-
(4.2) [ LW 5 an 29 ai? s sup [ 19201 30,8y < =
o ; {o,71 2

However, one can also use Lemma 4.1 to show the existence of solutions of (I} for more
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general nonlinearities 9g¢ if the mean curvature of 34 19 non-nzgative. A possible

class is described in tho.hypothosll

(BS) The function g : R* + K* is given by g(§) = g (18 « &
99 ¢ (0,#) + R being locally Lipschitz-continuous on (0,%). There exists
a constant L > 0 such that

(4.3) %; ((;o(:) +L)°*r) >0 on (0,® .
For any € > 0 there exists: cc > 0 such that for all r > 0

T
(4.4) Iggtx) = 2l S €« [ (gg(s) + L) » sds + C, ©
0

We then get the
Theorem 4.2: Let 2 C R® be bounded, 30 cz-lnooth, with non-negative mean curvature
H (with respect to the outer normal). Let (BS), (A3), (A4) and (A5) hold with

uy e w;'z(n) not a.pondlnq on t. Then the equation (I) with boundary conditions

(4.5) ) “'391(0,71 20

has a distributional solution u satisfying (3.4) and

(4.6) sup [ Iv:ulz(o,e) <®.
{o,71 9

Sketch of the proof:
As in the proof of Theorea 3.1, ws define for M > 0

) = inslgytrm, gME) = gHtIED ¢ €.
Then g% still satifies (BS). We solve (I) with g replaced by gH lnd‘ggt uniqucﬁr
distributional solutions u™ that satisfy (3.14). By an argument similar to the one used
above, ulf e L'(o,r:wz'z(n)) for all M. 8Still following the lines of the proof of
Theorem 3.1, we apply the resolvent kernel of a to the equation (I) to get (3.9),

differentiate formally (take difference quotients), and lultiply‘vlth -Axu"

which is an
admissible test functiun. This gives the identity (3.10) and - after rearranging terms -
(3.11) with £ 3 1. We then apply Lemma 4.1 and conclude that

[ 8 u"aviegy (19 o) + 1) vay a0,
a
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This Lemma is a step towards a simple non-linear version of Sobolevskii-type estinates
for lineér second-order elliptic operators as stated, e.g., in {(3]. We thank Prof. A.
Friedman for pointing this out to us. |

Obviously the identity of (4.1).st111 holds under the assumptions
ue Wz'z(ﬂ) N H;'z(ﬂ), g locally Lipschitz and bounded, r » g'(r) * r bounded, by a
standard approximation argument. ‘

It is now possible to use {4.1) to modify the arguments of Section 5, if in (1.1) T
is empty and “Ianx[o,rl z 0.

In step 2 of the proof of Theorem 3.1, the expression

é Aqu . div(;(lvxunl)vxuu) . 52

1,»

had to be estimated from below, £ € wo (1) in order to take care of boundary terr: If
30 is C2-smooth and uHIan 2 0, we s8imply choose & =2 1 and get by Leuma 4.1 and

manipulations similar to those in step 2

[ ot e awGUT Y > e e [ T 19, n D 0

3

Q Q14,3

oo v vt e [ Guae®h e ™o - o n,
fl . an

X > 0 a small constant. By a standard trace theorem this can be estimated from below by

ju")uz - ¢« [ guwaniv?
Q

2001 19, euvd® o
2h 4008 :

(see Lemma 5.1), C > 0, and f ;(IVuMI) . IVuMI2 is a priori bounded by (3.4) and Lemma
; a :

5.6. Hence in this special situation the solutions found in Theorem 3.1 fulfill

T
R ¥ e e
[] 19 (5 (IVul + L qu)lz + sup | lViuIz(',t) <w.

(4.2)
0oq {o,T] Q

However, one can also use Lemma 4.1 to show the existence of solutions of (I) for more
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general nonlinearities 9g¢ if the mean curvature of 3 is non-negative. A possible

class is described in the hypothesis

(BS) The function g : R® » B® is given by g(f) = qo(lﬂ) . g,

go ¢ [0,®) + R Dbeing locally Lipschitz~continuocus on {0,*). There exists

& constant L > 0 such that
(4.3) & Ugpte) +2) = 1) 20 on (0, .

Tor any € > 0 there exists c‘>o such that for all > 0

. L3
(4.4) lgglz) * xl €€« [ (gyls) + L) *sds +C, .
o

We then get the

Theorem 4.2: Let 8 C & be bounded, 30 cz-.-ooth, with non-negative mean curvature

B (with respect to the outer normal). Let (BS), (A3), (A4) and (AS) hold with

uy € w;"(m not depending on t. Then the equation (I) with boundary conditions

(4.5) ulamm'ﬂ 20

has a distributional solution u satisfying (3.4) and

(4.6)° sup [ lv:u|2(-,e) <=,
[o,T] 8

Sketch of the proof:
As in the pruof of Theorem 3.1, we define for M > 0

FHr) = infgy(r).m, (€ = ghUIED - & .

Then g§ still satifies (BS). We solve (I) with g replaced by g¢* and get unique .

distributional solutions u™ that satisfy (3.14). By an arqument sinilar to the one vsed

above, uM e x.'(o,'r;w""(n)) for all M. Still following the lines of the proof of

Theorea 3.1, we apply the resolvent kernel of a2 to the equation (I) to get (3.°),

differentiate formally (take difference quotients), and lultlply'vlth -Axu"

admissible test function. This gives the identity (3.10) and - after rearranging terms -

{3.11) with & 3 1. We then apply Lemma 4.1 and conclude that

{z aarvigir a0 e 7" 50,
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using (4.3) and H > 0. Hence

(4.7) sup f IAxuulz CK<Cm™
{o,T) 8

for all M, thus the WM are uniformly bounded in :.'(o,-nwz'z(m).

We now extract a subsequence of the (u")"” such that
(1) wMsu strongly 1n p¥o,mw" %@, Y+ V0 ae ta @ xtom,
(14) q:(lvxuul) eVt weakly in z'(0,mz'ca)) .
(11) 3"+ 3.y wearly 1n r¥o,mw" %) .
The choice (l) is possible, since the bounds (3.4) and (4.7) hbld uniformly in M;
properties of ¢ (cf. Lemma 5.4) and the estimate (3.14) show that the gz(lvh"I)Vu" are
equi-integrable and hence weakly precompact in L'(O,T,L‘(ﬂ)), hence (ii) is possible.
The continuity of 9 then shows that
€= qotlv‘ul) *Vu a.e. on g x [o,T] .,
and (4.7) still holds for the limit function. This proves 'l'ﬁoor- 4.2.
Ms The condition of "non-negative mean curvature of the boundary® that was used in
Theorem 4.2 reminds of the general curvature conditions that guarantee classical
solvability of quasilinear equations (cf. [22])). The "statiocnary" solutions of (I) are of
this type, and it would be intcresting to link these boundary condttloﬁa and properties of
the kernel a to show the convergence of solutions as t + =,
To concluds, we vouid like to comment on some related questions concerning the problem
(I) or its variants.

Existence of classical solutions:

By means of contraction type arguments, one susily shows the existence of classical
(cz-) solutions for (1) and smooth data that exist locally in time, and these solutions
will be unique. Our a priori estimates only permit to continue them in the case of one
space dimension, however, since then lxu will be HSlder-continuous (by the estimates of
Section 3 or 4), and one can apply the regularity theory for linear éaubo).ic equations.
Note that in one space dimension the introduction of the cut-off function £ (in Section

3) is not necessary.
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Uniqueness of solutions:

This will follow if one cs: show that the spatial gradients of solutions are a priori
bounded on & x [0,T] (and thus the unique approxi-aﬁing rolutions u in Sections 3 and

4, cbtained by modifying g and 8 for large arguments, becoms M-irdupendent for large

M). However, our estimates only gquarantee (in the setting of Section 4) that

- P
VoueL (0,TiL (M)

with p <® for n= 2 and p = nzf_‘ 2 for n > 2. The v3ual “"bootstrapping® techniquaus
(which would amcunt to regarding the integral term as a perturbation of a linear equation)
will not work due to the high order {(of growth and differentiation) of the integral term.

The case of g(u,V‘u):

If the integral term a * divxg(qu) iis replaced by, 6.9., a * divx(g(u) . qu),
then existence arguments become in fact simpler; since for approximating solutions u™ one
only has to guarantee the strong convergence of, e€.g., uH in some 1P, but not of

qun. Hénce a priori estimates of quH are sufficient to do this; they can be obtained

{under suitable additional assumptions) by taking g(u") as a test function in (I) and

using some definiteness properties of the form
R
ve[ a®vit) e vit)dt for v e L0, TR" .
0

The more genaral case a * divx(q(u,vxu)) geems to be more difficult.

-26-
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Appendix
Here we state some auxiliary arguments that have been used in the nrevious proofs.

Lemma 5.1: Let O CR® be bounded, 30 of class co",l‘ Cd an (n = 1)=dimensional

submanifold, 8 locally on one side of 3. Then Jor all ¢ > 0 there exists C(c} >0

such that for all u e \l"z(ﬂ)
(5.1) [t ee 19 u?ece [ 1u2.
r 2 Q-

This is a simple consequence of well-known trace thooljm (cf. [16]).
Lemma S.2: let 8 : R* R be locally upochttrcontinm, let L >0 and
L ¢+ 1¢8'%z) forall ren,
and assume that for any € > 0 there exists some C(¢) > 0 such that for all r eR

8'(r) S elB(xr) ¢ L x| ¢ Clc) &

r
let B(r) = [ /87(s) + L ds.
0
Then for any § > 0 there exists some E(C) 20 such that for all renR

18(r)| < 8 « B3(r) « &(8) .

Proof:; Let r € R, then

4
iS(e) + Lo x| < 8(0)] +[ (B°(s) + L)as
0 .

r .
<180)l +f /B(s) + L+ /e{B(s) + L » 8] + Cle) ds
0 .

< |8(0)] + B(r) « /ETB(E) + LE] o cle

< 180031 + e8%r) + S o 2 yper) ¢ 1),

hence

I8(r)] € ¢ » B3(x) + c (e + Lo |

< 283(xr) + He) .

«2l=

A




Lemsa 3.3: Let G : K" + R be differentiable, let L > 0, let
G(E) = G(E) *% (IH2 + 1) be positive, and let g = Vgc satisfy any of the folloving I
hypotheses:

(1) There exists C » 0 such that for all §,n

Ig(€) * n| € C o (GLE) + Gln) + 1)

continuous, and thQro exists a constant C > 0 such that for all r >0
goir) ¢+ L0,
0 S ttgglr) + 1) o k) € C o (g tr) + 1)
Then for all § > 0 there exists C(&) > 0 such that for all £ € ¥
| 19(E)] € 8+ G(E) + (&) .«
Condition (1i) implies condition (1i).

Proof: In case (i), let C(8) = wmax G(n).

Then for any £ T
8+ Inj<t ‘

I9(E)] = Semax Ig(€) e nl € 8o, +G(E) + 8, o (28 + 1.,
e ini<t

In case (ii), put g(r) = gg(r)} + L. Then for n,{ & »® and rg = max{inl,|&l)}
1g(€) » nl € GUIEI) » 1€) « Inl + Lo |EI «

S FUrg) s raen e JEl - Inl

%o %o
« -{ (9(a) c a)' s aas + [ J(s) o sas + L » |E] + |nl
[}

4
0

S(c,+ N[ Gis) » sas + L ¢ [ElIn]
°

4
0

cceicye N[ Fia) e san e X qiei?e in?
0

€ Ce (GE) + G(M) + 1) ,

and we are back in case (i).

(1) The function g 1is given by g(€) = g (|El) * &, is locally Lipschitz
o 9 .
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Lesma S.4: et R be a finite measure space, M C L‘(Q,l\ & bounded set and
NC L’(O.l"). Por all u €N and € > 0 let there exist v GM and Ce > 0 such that
for a.e. x €8 ‘

leix)] < ¢ - lvix)! + Ce *

Then N is equi-integrable (and hence weakly sequentially compar® in L'(Q.l")). i.e.

ua lul = 0 uniformly in u e N.
k+e {|u]>k}
Proof:
C‘ . I1
] Iece (elvl +c) €eems .
{{u}>x} {lul>x}
wvhere

M=sup /[ |vl, n,--upflu|<n+c'-[1.
- veMg ueN g ]

lemma S.5: let (v-)-” be a sequence in x..( {o,r] x a,n"). such that (in the notation

of Section 2)
g(w™) * ¢ weakly in r'((0,m) x a,a")

ess sup [ (G(W™) + L o [w*d)(e,t) €K<
to,m @

for all a.
Let v € L'([o,'l‘] x 2,8"), ess sup [ (G(v) + lelz)(nt) < ®», Then

{o,T] Q

J atw™) ¢ wte) o [ T o v(e) weakly tn r'(0,Tim) .
2 2

= 29-




Proof:s rYor M > 0, define v.-in!(u.lup(-n,v)}. let 0!!..(0,1')!). then

T T
(8.2) J e) o [ (gtw™ ¢ wige,tdat @ [ gt o [ gut) o (v = v )(e,t)de
° 2 0 2

T
o[ ate) o [ g™ o ivte,eiae .
0 Q
The first term can be estimated by

T N - )
(5.3) 3 M ece [ ]G 4Ry = w4 1)
L o8
. | |
by (2.1),  G(p) = G(p) #% Iple 1, for any R > {, since (;.1) also implies
|
KeC |

S(xop) S (CHG(P)) e @ — &
' |

T

Hence the expression (5.3) is bounded by
E
=e Co (GIR ¢ (v = w,)) + 1)
R oa "

T ' !
Since [ !Eu s (v~ J')) *Te ! 5(0). as N * =, for any fR, we thus derive from

oQ Q |
(5.2) and the convergence of. the second term in (5.2)

|

T i
Lm sup 1f #(e) o [ (gw™) o v = g o v e c%- c
[ o 0 ] ‘
. for any R and M, which shows the claim.
T .
Lemma 5.6: Let g, 3 (0,%) # R Dbe as in (B2), Gy(r) -f 9y(s) * sds, L; as in (B2).
/]
Then for all € > 0 there exists some C(¢) > 0 such that for all r,s >0

Igglr) « £+ 8] € & ¢ (Gy(a) + Lyo?) + cled(Gy (r) + 1, » £) .

Proof: Pirst note that r» (qo(r) + L,) e r is monotone and (without loss of generality)

positive for r > 0. Purther for Ta>ry>0

«30-




3 1
2 go(t) * T4 qo(t) + L

(90('2) + L‘) *r, - op 1 d') ‘
(9°(r‘) + L‘) * T, r, (9o(t) + L') ot
. J
' 2 r, O
[« R ) 2
cop(f ==—ar)=(F) .
3 1
1
80 either ¢ * r > 8; then
2

(golr) + L) e xr oo (golr) + Ly ox7,

or ¢ ¢ % 3 tien .

: 1,E* 2
(golr) + L) sz o8¢ (7)o (gg(m) +1y) * 8%

On the other hand,
L 3 4
Golr) + 5t o 2 “ ] (e + 1) ¢ uce = 3 (gpted + 1) ¢ r’-%{ gy(e) « s’

1 2.
> % (golr) +Ly) o 1 -3£ (ggle) + Ly) * sds

L
1 2_¢ 1.2
o3 lgglr) #1y) o ¢ =3 (eytry +5 2%,

hence
(gg(r) + L) s x2 G (C+ 2) o (G R RS
go(r 1 r c (Gy(r) + 3= ) »
Hence -
Ly 2 . ce+2 Ly o
0 € (go(r) + Ly) cr* 86 (C+ 2 e (Glr) +3=rT) + =1y (Gy(s) + 3~ 37) «
[

Combining this with

lr *» 8] €8+ 2. %3 82 for a1l $

gives the des.red estimate.
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